

Linux System and Performance Monitoring
Darren Hoch

Director of Professional Services – StrongMail Systems, Inc.

Release 2.3.4 - February 2005

Linux Performance Monitoring

PUBLISHED BY:
Darren Hoch
StrongMail Systems
1300 Island Drive
Suite 200
Redwood City, CA
94065
dhoch@strongmail.com

Copyright 2009 Darren Hoch. All rights reserved.

No parts of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the Darren Hoch.

StrongMail is a registered trademark of StrongMail Systems, Inc. All other trademarks are the property of
their respective owners.

http://www.strongmailsystems.com

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 4 of 43

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 5 of 43

Table of Contents
1.0 Performance Monitoring Introduction ... 7

1.1 Determining Application Type ... 7

1.2 Determining Baseline Statistics .. 8

2.0 Installing Monitoring Tools ... 8

3.0 Introducing the CPU .. 9

3.1 Context Switches .. 9

3.2 The Run Queue .. 10

3.3 CPU Utilization .. 10

4.0 CPU Performance Monitoring .. 10

4.1 Using the vmstat Utility ... 11

4.2 Case Study: Sustained CPU Utilization .. 12

4.3 Case Study: Overloaded Scheduler ... 12

4.4 Using the mpstat Utility ... 13

4.5 Case Study: Underutilized Process Load ... 13

4.6 Conclusion .. 15

5.0 Introducing Virtual Memory .. 16

5.1 Virtual Memory Pages .. 16

5.2 Kernel Memory Paging ... 16

5.3 The Page Frame Reclaim Algorithm (PFRA) ... 16

5.4 kswapd ... 16

5.5 Kernel Paging with pdflush ... 17

5.6 Case Study: Large Inbound I/O .. 18

5.7 Conclusion .. 19

6.0 Introducing I/O Monitoring ... 20

6.1 Reading and Writing Data - Memory Pages ... 20

6.2 Major and Minor Page Faults .. 20

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 6 of 43

6.3 The File Buffer Cache ... 21

6.4 Types of Memory Pages ... 22

6.5 Writing Data Pages Back to Disk .. 22

7.0 Monitoring I/O .. 23

7.1 Calculating IO’s Per Second ... 23

7.2 Random vs Sequential I/O .. 24

7.3 When Virtual Memory Kills I/O .. 25

7.4 Conclusion .. 26

8.0 Introducing Network Monitoring .. 26

8.1 Ethernet Configuration Settings .. 27

8.2 Monitoring Network Throughput ... 28

8.3 Displaying Connection Statistics tcptrace .. 34

8.4 Conclusion .. 38

Appendix A: Performance Monitoring Step by Step – Case Study 39

Performance Analysis Procedure ... 39

Performance Follow-up ... 42

References ... 43

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 7 of 43

1.0 Performance Monitoring Introduction
Performance tuning is the process of finding bottlenecks in a system and tuning the
operating system to eliminate these bottlenecks. Many administrators believe that
performance tuning can be a “cook book” approach, which is to say that setting some
parameters in the kernel will simply solve a problem. This is not the case. Performance
tuning is about achieving balance between the different sub-systems of an OS. These
sub-systems include:

• CPU
• Memory
• IO
• Network

These sub-systems are all highly dependent on each other. Any one of them with high
utilization can easily cause problems in the other. For example:

• large amounts of page-in IO requests can fill the memory
queues

• full gigabit throughput on an Ethernet controller may consume
a CPU

• a CPU may be consumed attempting to maintain free memory
queues

• a large number of disk write requests from memory may
consume a CPU and IO channels

In order to apply changes to tune a system, the location of the bottleneck must be
located. Although one sub-system appears to be causing the problems, it may be as a
result of overload on another sub-system.

1.1 Determining Application Type
In order to understand where to start looking for tuning bottlenecks, it is first
important to understand the behavior of the system under analysis. The
application stack of any system is often broken down into two types:

• IO Bound – An IO bound application requires heavy use of
memory and the underlying storage system. This is due to the
fact that an IO bound application is processing (in memory)
large amounts of data. An IO bound application does not
require much of the CPU or network (unless the storage system
is on a network). IO bound applications use CPU resources to
make IO requests and then often go into a sleep state.
Database applications are often considered IO bound
applications.

• CPU Bound – A CPU bound application requires heavy use of
the CPU. CPU bound applications require the CPU for batch
processing and/or mathematical calculations. High volume web
servers, mail servers, and any kind of rendering server are
often considered CPU bound applications.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 8 of 43

1.2 Determining Baseline Statistics
System utilization is contingent on administrator expectations and system
specifications. The only way to understand if a system is having performance
issues is to understand what is expected of the system. What kind of
performance should be expected and what do those numbers look like? The only
way to establish this is to create a baseline. Statistics must be available for a
system under acceptable performance so it can be compared later against
unacceptable performance.

In the following example, a baseline snapshot of system performance is
compared against a snapshot of the system under heavy utilization.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 1 0 138592 17932 126272 214244 0 0 1 18 109 19 2 1 1 96
 0 0 138592 17932 126272 214244 0 0 0 0 105 46 0 1 0 99
 0 0 138592 17932 126272 214244 0 0 0 0 198 62 40 14 0 45
 0 0 138592 17932 126272 214244 0 0 0 0 117 49 0 0 0 100
 0 0 138592 17924 126272 214244 0 0 0 176 220 938 3 4 13 80
 0 0 138592 17924 126272 214244 0 0 0 0 358 1522 8 17 0 75
 1 0 138592 17924 126272 214244 0 0 0 0 368 1447 4 24 0 72
 0 0 138592 17924 126272 214244 0 0 0 0 352 1277 9 12 0 79

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 0 145940 17752 118600 215592 0 1 1 18 109 19 2 1 1 96
 2 0 145940 15856 118604 215652 0 0 0 468 789 108 86 14 0 0
 3 0 146208 13884 118600 214640 0 360 0 360 498 71 91 9 0 0
 2 0 146388 13764 118600 213788 0 340 0 340 672 41 87 13 0 0
 2 0 147092 13788 118600 212452 0 740 0 1324 620 61 92 8 0 0
 2 0 147360 13848 118600 211580 0 720 0 720 690 41 96 4 0 0
 2 0 147912 13744 118192 210592 0 720 0 720 605 44 95 5 0 0
 2 0 148452 13900 118192 209260 0 372 0 372 639 45 81 19 0 0
 2 0 149132 13692 117824 208412 0 372 0 372 457 47 90 10 0 0

Just by looking at the numbers in the last column (id) which represent idle time,
we can see that under baseline conditions, the CPU is idle for 79% - 100% of the
time. In the second output, we can see that the system is 100% utilized and not
idle. What needs to be determined is whether or not the system at CPU utilization
is managing.

2.0 Installing Monitoring Tools
Most *nix systems ship with a series of standard monitoring commands. These
monitoring commands have been a part of *nix since its inception. Linux provides these
monitoring tools as part of the base installation or add-ons. Ultimately, there are
packages available for most distributions with these tools. Although there are multiple
open source and 3rd party monitoring tools, the goal of this paper is to use tools included
with a Linux distribution.

This paper describes how to monitor performance using the following tools.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 9 of 43

Figure 1: Performance Monitoring Tools

Tool Description Base Repository
vmstat all purpose performance tool yes yes
mpstat provides statistics per CPU no yes
sar all purpose performance monitoring tool no yes
iostat provides disk statistics no yes
netstat provides network statistics yes yes
dstat monitoring statistics aggregator no in most distributions
iptraf traffic monitoring dashboard no yes
netperf Network bandwidth tool no In some distributions
ethtool reports on Ethernet interface configuration yes yes
iperf Network bandwidth tool no yes
tcptrace Packet analysis tool no yes

3.0 Introducing the CPU
The utilization of a CPU is largely dependent on what resource is attempting to access it.
The kernel has a scheduler that is responsible for scheduling two kinds of resources:
threads (single or multi) and interrupts. The scheduler gives different priorities to the
different resources. The following list outlines the priorities from highest to lowest:

• Interrupts – Devices tell the kernel that they are done
processing. For example, a NIC delivers a packet or a hard
drive provides an IO request

• Kernel (System) Processes – All kernel processing is handled
at this level of priority.

• User Processes – This space is often referred to as “userland”.
All software applications run in the user space. This space has
the lowest priority in the kernel scheduling mechanism.

In order to understand how the kernel manages these different resources, a few
key concepts need to be introduced. The following sections introduce context
switches, run queues, and utilization.

3.1 Context Switches
Most modern processors can only run one process (single threaded) or thread at
time. The n-way Hyper threaded processors have the ability to run n threads at a
time. Still, the Linux kernel views each processor core on a dual core chip as an
independent processor. For example, a system with one dual core processor is
reported as two individual processors by the Linux kernel.

A standard Linux kernel can run anywhere from 50 to 50,000 process threads at
once. With only one CPU, the kernel has to schedule and balance these process
threads. Each thread has an allotted time quantum to spend on the processor.
Once a thread has either passed the time quantum or has been preempted by
something with a higher priority (a hardware interrupt, for example), that thread is

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 10 of 43

place back into a queue while the higher priority thread is placed on the
processor. This switching of threads is referred to as a context switch.

Every time the kernel conducts a context switch, resources are devoted to
moving that thread off of the CPU registers and into a queue. The higher the
volume of context switches on a system, the more work the kernel has to do in
order to manage the scheduling of processes.

3.2 The Run Queue
Each CPU maintains a run queue of threads. Ideally, the scheduler should be
constantly running and executing threads. Process threads are either in a sleep
state (blocked and waiting on IO) or they are runnable. If the CPU sub-system is
heavily utilized, then it is possible that the kernel scheduler can’t keep up with the
demand of the system. As a result, runnable processes start to fill up a run
queue. The larger the run queue, the longer it will take for process threads to
execute.

A very popular term called “load” is often used to describe the state of the run
queue. The system load is a combination of the amount of process threads
currently executing along with the amount of threads in the CPU run queue. If
two threads were executing on a dual core system and 4 were in the run queue,
then the load would be 6. Utilities such as top report load averages over the
course of 1, 5, and 15 minutes.

3.3 CPU Utilization
CPU utilization is defined as the percentage of usage of a CPU. How a CPU is
utilized is an important metric for measuring system. Most performance
monitoring tools categorize CPU utilization into the following categories:

• User Time – The percentage of time a CPU spends executing
process threads in the user space.

• System Time – The percentage of time the CPU spends
executing kernel threads and interrupts.

• Wait IO – The percentage of time a CPU spends idle because
ALL process threads are blocked waiting for IO requests to
complete.

• Idle – The percentage of time a processor spends in a
completely idle state.

4.0 CPU Performance Monitoring
Understanding how well a CPU is performing is a matter of interpreting run queue,
utilization, and context switching performance. As mentioned earlier, performance is all
relative to baseline statistics. There are, however, some general performance
expectations on any system. These expectations include:

• Run Queues – A run queue should have no more than 1-3
threads queued per processor. For example, a dual processor
system should not have more than 6 threads in the run queue.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 11 of 43

• CPU Utilization – If a CPU is fully utilized, then the following
balance of utilization should be achieved.

• 65% – 70% User Time
• 30% - 35% System Time
• 0% - 5% Idle Time
• Context Switches – The amount of context switches is directly

relevant to CPU utilization. A high amount of context switching
is acceptable if CPU utilization stays within the previously
mentioned balance

There are many tools that are available for Linux that measure these statistics. The first
two tools examined will be vmstat and top.

4.1 Using the vmstat Utility
The vmstat utility provides a good low-overhead view of system performance.
Because vmstat is such a low-overhead tool, it is practical to keep it running on
a console even under a very heavily loaded server were you need to monitor the
health of a system at a glance. The utility runs in two modes: average and
sample mode. The sample mode will measure statistics over a specified interval.
This mode is the most useful when understanding performance under a
sustained load. The following example demonstrates vmstat running at 1
second intervals.

vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 104300 16800 95328 72200 0 0 5 26 7 14 4 1 95 0
 0 0 104300 16800 95328 72200 0 0 0 24 1021 64 1 1 98 0
 0 0 104300 16800 95328 72200 0 0 0 0 1009 59 1 1 98 0

The relevant fields in the output are as follows:

Table 1: The vmstat CPU statistics

Field Description

r
The amount of threads in the run queue. These are threads that are runnable,
but the CPU is not available to execute them.

b This is the number of processes blocked and waiting on IO requests to finish.
in This is the number of interrupts being processed.
cs This is the number of context switches currently happening on the system.
us This is the percentage of user CPU utilization.
sys This is the percentage of kernel and interrupts utilization.

wa
This is the percentage of idle processor time due to the fact that ALL runnable
threads are blocked waiting on IO.

id This is the percentage of time that the CPU is completely idle.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 12 of 43

4.2 Case Study: Sustained CPU Utilization
In the next example, the system is completely utilized.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 3 0 206564 15092 80336 176080 0 0 0 0 718 26 81 19 0 0
 2 0 206564 14772 80336 176120 0 0 0 0 758 23 96 4 0 0
 1 0 206564 14208 80336 176136 0 0 0 0 820 20 96 4 0 0
 1 0 206956 13884 79180 175964 0 412 0 2680 1008 80 93 7 0 0
 2 0 207348 14448 78800 175576 0 412 0 412 763 70 84 16 0 0
 2 0 207348 15756 78800 175424 0 0 0 0 874 25 89 11 0 0
 1 0 207348 16368 78800 175596 0 0 0 0 940 24 86 14 0 0
 1 0 207348 16600 78800 175604 0 0 0 0 929 27 95 3 0 2
 3 0 207348 16976 78548 175876 0 0 0 2508 969 35 93 7 0 0
 4 0 207348 16216 78548 175704 0 0 0 0 874 36 93 6 0 1
 4 0 207348 16424 78548 175776 0 0 0 0 850 26 77 23 0 0
 2 0 207348 17496 78556 175840 0 0 0 0 736 23 83 17 0 0
 0 0 207348 17680 78556 175868 0 0 0 0 861 21 91 8 0 1

The following observations are made from the output:

• There are a high amount of interrupts (in) and a low amount of
context switches. It appears that a single process is making
requests to hardware devices.

• To further prove the presence of a single application, the user
(us) time is constantly at 85% and above. Along with the low
amount of context switches, the process comes on the
processor and stays on the processor.

• The run queue is just about at the limits of acceptable
performance. On a couple occasions, it goes beyond
acceptable limits.

4.3 Case Study: Overloaded Scheduler
In the following example, the kernel scheduler is saturated with context switches.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 1 207740 98476 81344 180972 0 0 2496 0 900 2883 4 12 57 27
 0 1 207740 96448 83304 180984 0 0 1968 328 810 2559 8 9 83 0
 0 1 207740 94404 85348 180984 0 0 2044 0 829 2879 9 6 78 7
 0 1 207740 92576 87176 180984 0 0 1828 0 689 2088 3 9 78 10
 2 0 207740 91300 88452 180984 0 0 1276 0 565 2182 7 6 83 4
 3 1 207740 90124 89628 180984 0 0 1176 0 551 2219 2 7 91 0
 4 2 207740 89240 90512 180984 0 0 880 520 443 907 22 10 67 0
 5 3 207740 88056 91680 180984 0 0 1168 0 628 1248 12 11 77 0
 4 2 207740 86852 92880 180984 0 0 1200 0 654 1505 6 7 87 0
 6 1 207740 85736 93996 180984 0 0 1116 0 526 1512 5 10 85 0
 0 1 207740 84844 94888 180984 0 0 892 0 438 1556 6 4 90 0

The following conclusions can be drawn from the output:

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 13 of 43

• The amount of context switches is higher than interrupts,
suggesting that the kernel has to spend a considerable amount
of time context switching threads.

• The high volume of context switches is causing an unhealthy
balance of CPU utilization. This is evident by the fact that the
wait on IO percentage is extremely high and the user
percentage is extremely low.

• Because the CPU is block waiting for I/O, the run queue starts
to fill and the amount of threads blocked waiting on I/O also
fills.

4.4 Using the mpstat Utility
If your system has multiple processor cores, you can use the mpstat command
to monitor each individual core. The Linux kernel treats a dual core processor as
2 CPU’s. So, a dual processor system with dual cores will report 4 CPUs
available. The mpstat command provides the same CPU utilization statistics as
vmstat, but mpstat breaks the statistics out on a per processor basis.

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 0.00 0.00 3.19 96.53 13.27
05:17:32 PM 0 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 1 1.12 0.00 12.73 86.15 13.27
05:17:32 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 3 0.00 0.00 0.00 100.00 0.00

4.5 Case Study: Underutilized Process Load
In the following case study, a 4 CPU cores are available. There are two CPU
intensive processes running that fully utilize 2 of the cores (CPU 0 and 1). The
third core is processing all kernel and other system functions (CPU 3). The fourth
core is sitting idle (CPU 2).

The top command shows that there are 3 processes consuming almost an entire
CPU core:

top -d 1
top - 23:08:53 up 8:34, 3 users, load average: 0.91, 0.37, 0.13
Tasks: 190 total, 4 running, 186 sleeping, 0 stopped, 0 zombie
Cpu(s): 75.2% us, 0.2% sy, 0.0% ni, 24.5% id, 0.0% wa, 0.0% hi, 0.0%
si
Mem: 2074736k total, 448684k used, 1626052k free, 73756k buffers
Swap: 4192956k total, 0k used, 4192956k free, 259044k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
15957 nobody 25 0 2776 280 224 R 100 20.5 0:25.48 php
15959 mysql 25 0 2256 280 224 R 100 38.2 0:17.78 mysqld
15960 apache 25 0 2416 280 224 R 100 15.7 0:11.20 httpd
15901 root 16 0 2780 1092 800 R 1 0.1 0:01.59 top
 1 root 16 0 1780 660 572 S 0 0.0 0:00.64 init

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 14 of 43

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 81.52 0.00 18.48 21.17 130.58
05:17:32 PM 0 83.67 0.00 17.35 0.00 115.31
05:17:32 PM 1 80.61 0.00 19.39 0.00 13.27
05:17:32 PM 2 0.00 0.00 16.33 84.66 2.01
05:17:32 PM 3 79.59 0.00 21.43 0.00 0.00

05:17:32 PM CPU %user %nice %system %idle intr/s
05:17:33 PM all 85.86 0.00 14.14 25.00 116.49
05:17:33 PM 0 88.66 0.00 12.37 0.00 116.49
05:17:33 PM 1 80.41 0.00 19.59 0.00 0.00
05:17:33 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:33 PM 3 83.51 0.00 16.49 0.00 0.00

05:17:33 PM CPU %user %nice %system %idle intr/s
05:17:34 PM all 82.74 0.00 17.26 25.00 115.31
05:17:34 PM 0 85.71 0.00 13.27 0.00 115.31
05:17:34 PM 1 78.57 0.00 21.43 0.00 0.00
05:17:34 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:34 PM 3 92.86 0.00 9.18 0.00 0.00

05:17:34 PM CPU %user %nice %system %idle intr/s
05:17:35 PM all 87.50 0.00 12.50 25.00 115.31
05:17:35 PM 0 91.84 0.00 8.16 0.00 114.29
05:17:35 PM 1 90.82 0.00 10.20 0.00 1.02
05:17:35 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:35 PM 3 81.63 0.00 15.31 0.00 0.00

You can determine which process is taking up which CPU by running the ps
command again and monitoring the PSR column.

while :; do ps -eo pid,ni,pri,pcpu,psr,comm | grep 'mysqld'; sleep 1;
done
 PID NI PRI %CPU PSR COMMAND
15775 0 15 86.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 94.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 96.6 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 98.0 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 98.8 3 mysqld
 PID NI PRI %CPU PSR COMMAND
15775 0 14 99.3 3 mysqld

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 15 of 43

4.6 Conclusion
Monitoring CPU performance consists of the following actions:

• Check the system run queue and make sure there are no more
than 3 runnable threads per processor

• Make sure the CPU utilization is split between 70/30 between
user and system

• When the CPU spends more time in system mode, it is more
than likely overloaded and trying to reschedule priorities

• Running CPU bound process always get penalized while I/O
process are rewarded

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 16 of 43

5.0 Introducing Virtual Memory
Virtual memory uses a disk as an extension of RAM so that the effective size of usable
memory grows correspondingly. The kernel will write the contents of a currently unused
block of memory to the hard disk so that the memory can be used for another purpose.
When the original contents are needed again, they are read back into memory. This is all
made completely transparent to the user; programs running under Linux only see the
larger amount of memory available and don't notice that parts of them reside on the disk
from time to time. Of course, reading and writing the hard disk is slower (on the order of a
thousand times slower) than using real memory, so the programs don't run as fast. The
part of the hard disk that is used as virtual memory is called the swap space.

5.1 Virtual Memory Pages
Virtual memory is divided into pages. Each virtual memory page on the X86
architecture is 4KB. When the kernel writes memory to and from disk, it writes
memory in pages. The kernel writes memory pages to both the swap device and
the file system.

5.2 Kernel Memory Paging
Memory paging is a normal activity not to be confused with memory swapping.
Memory paging is the process of synching memory back to disk at normal
intervals. Over time, applications will grow to consume all of memory. At some
point, the kernel must scan memory and reclaim unused pages to be allocated to
other applications.

5.3 The Page Frame Reclaim Algorithm (PFRA)
The PFRA is responsible for freeing memory. The PFRA selects which memory
pages to free by page type. Page types are listed below:

• Unreclaimable – locked, kernel, reserved pages
• Swappable – anonymous memory pages
• Syncable – pages backed by a disk file
• Discardable – static pages, discarded pages

All but the “unreclaimable” pages may be reclaimed by the PFRA.

There are two main functions in the PFRA. These include the kswapd kernel
thread and the “Low On Memory Reclaiming” function.

5.4 kswapd
The kswapd daemon is responsible for ensuring that memory stays free. It
monitors the pages_high and pages_low watermarks in the kernel. If the
amount of free memory is below pages_low, the kswapd process starts a scan
to attempt to free 32 pages at a time. It repeats this process until the amount of
free memory is above the pages_high watermark.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 17 of 43

The kswapd thread performs the following actions:

• If the page is unmodified, it places the page on the free list.
• If the page is modified and backed by a filesystem, it writes the

contents of the page to disk.
• If the page is modified and not backed up by any filesystem

(anonymous), it writes the contents of the page to the swap
device.

ps -ef | grep kswapd
root 30 1 0 23:01 ? 00:00:00 [kswapd0]

5.5 Kernel Paging with pdflush
The pdflush daemon is responsible for synchronizing any pages associated
with a file on a filesystem back to disk. In other words, when a file is modified in
memory, the pdflush daemon writes it back to disk.

ps -ef | grep pdflush
root 28 3 0 23:01 ? 00:00:00 [pdflush]
root 29 3 0 23:01 ? 00:00:00 [pdflush]

The pdflush daemon starts synchronizing dirty pages back to the filesystem
when 10% of the pages in memory are dirty. This is due to a kernel tuning
parameter called vm.dirty_background_ratio.

sysctl -n vm.dirty_background_ratio
10

The pdflush daemon works independently of the PFRA under most
circumstances. When the kernel invokes the LMR algorithm, the LMR specifically
forces pdflush to flush dirty pages in addition to other page freeing routines.

Under intense memory pressure in the 2.4 kernel, the system would experience
swap thrashing. This would occur when the PFRA would steal a page that an active
process was trying to use. As a result, the process would have to reclaim that page
only for it to be stolen again, creating a thrashing condition. This was fixed in
kernel 2.6 with the “Swap Token”, which prevents the PFRA from constantly
stealing the same page from a process.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 18 of 43

5.6 Case Study: Large Inbound I/O
The vmstat utility reports on virtual memory usage in addition to CPU usage.
The following fields in the vmstat output are relevant to virtual memory:

Table 2: The vmstat Memory Statistics

Field Description

Swapd
The amount of virtual memory in KB currently in use. As free memory reaches low
thresholds, more data is paged to the swap device.

Free
The amount of physical RAM in kilobytes currently available to running
applications.

Buff
The amount of physical memory in kilobytes in the buffer cache as a result of
read() and write() operations.

Cache The amount of physical memory in kilobytes mapped into process address space.
So The amount of data in kilobytes written to the swap disk.
Si The amount of data in kilobytes written from the swap disk back into RAM.

Bo
The amount of disk blocks paged out from the RAM to the filesystem or swap
device.

Bi The amount of disk blocks paged into RAM from the filesystem or swap device.

The following vmstat output demonstrates heavy utilization of virtual memory
during an I/O application spike.

vmstat 3
 procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 3 2 809192 261556 79760 886880 416 0 8244 751 426 863 17 3 6 75
 0 3 809188 194916 79820 952900 307 0 21745 1005 1189 2590 34 6 12 48
 0 3 809188 162212 79840 988920 95 0 12107 0 1801 2633 2 2 3 94
 1 3 809268 88756 79924 1061424 260 28 18377 113 1142 1694 3 5 3 88
 1 2 826284 17608 71240 1144180 100 6140 25839 16380 1528 1179 19 9 12 61
 2 1 854780 17688 34140 1208980 1 9535 25557 30967 1764 2238 43 13 16 28
 0 8 867528 17588 32332 1226392 31 4384 16524 27808 1490 1634 41 10 7 43
 4 2 877372 17596 32372 1227532 213 3281 10912 3337 678 932 33 7 3 57
 1 2 885980 17800 32408 1239160 204 2892 12347 12681 1033 982 40 12 2 46
 5 2 900472 17980 32440 1253884 24 4851 17521 4856 934 1730 48 12 13 26
 1 1 904404 17620 32492 1258928 15 1316 7647 15804 919 978 49 9 17 25
 4 1 911192 17944 32540 1266724 37 2263 12907 3547 834 1421 47 14 20 20
 1 1 919292 17876 31824 1275832 1 2745 16327 2747 617 1421 52 11 23 14
 5 0 925216 17812 25008 1289320 12 1975 12760 3181 772 1254 50 10 21 19
 0 5 932860 17736 21760 1300280 8 2556 15469 3873 825 1258 49 13 24 15

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 19 of 43

The following observations are made from this output:

• A large amount of disk blocks are paged in (bi) from the
filesystem. This is evident in the fact that the cache of data in
process address spaces (cache) grows.

• During this period, the amount of free memory (free) remains
steady at 17MB even though data is paging in from the disk to
consume free RAM.

• To maintain the free list, kswapd steals memory from the
read/write buffers (buff) and assigns it to the free list. This is
evident in the gradual decrease of the buffer cache (buff).

• The kswapd process then writes dirty pages to the swap device
(so). This is evident in the fact that the amount of virtual
memory utilized gradually increases (swpd).

5.7 Conclusion
Virtual memory performance monitoring consists of the following actions:

• The less major page faults on a system, the better response
times achieved as the system is leveraging memory caches
over disk caches.

• Low amounts of free memory are a good sign that caches are
effectively used unless there are sustained writes to the swap
device and disk.

• If a system reports any sustained activity on the swap device, it
means there is a memory shortage on the system.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 20 of 43

6.0 Introducing I/O Monitoring
Disk I/O subsystems are the slowest part of any Linux system. This is due mainly to their
distance from the CPU and the fact that disks require the physics to work (rotation and
seek). If the time taken to access disk as opposed to memory was converted into minutes
and seconds, it is the difference between 7 days and 7 minutes. As a result, it is essential
that the Linux kernel minimizes the amount of I/O it generates on a disk. The following
subsections describe the different ways the kernel processes data I/O from disk to
memory and back.

6.1 Reading and Writing Data - Memory Pages
The Linux kernel breaks disk I/O into pages. The default page size on most Linux
systems is 4K. It reads and w rites disk blocks in and out of memory in 4K page
sizes. You can check the page size of your system by using the time command
in verbose mode and searching for the page size:

/usr/bin/time -v date

<snip>

Page size (bytes): 4096

<snip>

6.2 Major and Minor Page Faults
Linux, like most UNIX systems, uses a virtual memory layer that maps into
physical address space. This mapping is "on demand" in the sense that when a
process starts, the kernel only maps that which is required. When an application
starts, the kernel searches the CPU caches and then physical memory. If the
data does not exist in either, the kernel issues a major page fault (MPF). A MPF
is a request to the disk subsystem to retrieve pages off disk and buffer them in
RAM.

Once memory pages are mapped into the buffer cache, the kernel will attempt to
use these pages resulting in a minor page fault (MnPF). A MnPF saves the
kernel time by reusing a page in memory as opposed to placing it back on the
disk.

In the following example, the time command is used to demonstrate how many
MPF and MnPF occurred when an application started. The first time the
application starts, there are many MPFs:

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 21 of 43

/usr/bin/time -v evolution

<snip>

Major (requiring I/O) page faults: 163
Minor (reclaiming a frame) page faults: 5918

<snip>

The second time evolution starts, the kernel does not issue any MPFs because the
application is in memory already:

/usr/bin/time -v evolution

<snip>

Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 5581

<snip>

6.3 The File Buffer Cache
The file buffer cache is used by the kernel to minimize MPFs and maximize
MnPFs. As a system generates I/O over time, this buffer cache will continue to
grow as the system will leave these pages in memory until memory gets low and
the kernel needs to "free" some of these pages for other uses. The end result is
that many system administrators see low amounts of free memory and become
concerned when in reality, the system is just making good use of its caches.

The following output is taken from the /proc/meminfo file:

cat /proc/meminfo
MemTotal: 2075672 kB
MemFree: 52528 kB
Buffers: 24596 kB
Cached: 1766844 kB

<snip>

The system has a total of 2 GB (MemTotal) of RAM available on it. There is
currently 52 MB of RAM "free" (MemFree), 24 MB RAM that is allocated to disk
write operations (Buffers), and 1.7 GB of pages read from disk in RAM
(Cached).

The kernel is using these via the MnPF mechanism as opposed to pulling all of
these pages in from disk. It is impossible to tell from these statistics whether or
not the system is under distress as we only have part of the picture.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 22 of 43

6.4 Types of Memory Pages
There are 3 types of memory pages in the Linux kernel. These pages are
described below:

• Read Pages – These are pages of data read in via disk (MPF)
that are read only and backed on disk. These pages exist in the
Buffer Cache and include static files, binaries, and libraries that
do not change. The Kernel will continue to page these into
memory as it needs them. If memory becomes short, the kernel
will "steal" these pages and put them back on the free list
causing an application to have to MPF to bring them back in.

• Dirty Pages – These are pages of data that have been modified
by the kernel while in memory. These pages need to be synced
back to disk at some point using the pdflush daemon. In the
event of a memory shortage, kswapd (along with pdflush) will
write these pages to disk in order to make more room in
memory.

• Anonymous Pages – These are pages of data that do belong to
a process, but do not have any file or backing store associated
with them. They can't be synchronized back to disk. In the
event of a memory shortage, kswapd writes these to the swap
device as temporary storage until more RAM is free
("swapping" pages).

6.5 Writing Data Pages Back to Disk
Applications themselves may choose to write dirty pages back to disk
immediately using the fsync() or sync() system calls. These system calls
issue a direct request to the I/O scheduler. If an application does not invoke
these system calls, the pdflush kernel daemon runs at periodic intervals and
writes pages back to disk.

ps -ef | grep pdflush
root 186 6 0 18:04 ? 00:00:00 [pdflush]

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 23 of 43

7.0 Monitoring I/O
Certain conditions occur on a system that may create I/O bottlenecks. These conditions
may be identified by using a standard set of system monitoring tools. These tools include
top, vmstat, iostat, and sar. There are some similarities between the output of
these commands, but for the most part, each offers a unique set of output that provides a
different aspect on performance. The following subsections describe conditions that
cause I/O bottlenecks.

7.1 Calculating IO’s Per Second
Every I/O request to a disk takes a certain amount of time. This is due primarily
to the fact that a disk must spin and a head must seek. The spinning of a disk is
often referred to as "rotational delay" (RD) and the moving of the head as a "disk
seek" (DS). The time it takes for each I/O request is calculated by adding DS and
RD. A disk's RD is fixed based on the RPM of the drive. An RD is considered half
a revolution around a disk. To calculate RD for a 10K RPM drive, perform the
following:

1. Divide 10000 RPM by 60 seconds (10000/60 = 166 RPS)

2. Convert 1 of 166 to decimal (1/166 = 0.0006 seconds per Rotation)

3. Multiply the seconds per rotation by 1000 milliseconds (6 MS per rotation)

4. Divide the total in half (6/2 = 3 MS) or RD

5. Add an average of 3 MS for seek time (3 MS + 3 MS = 6 MS)

6. Add 2 MS for latency (internal transfer) (6 MS + 2 MS = 8MS)

7. Divide 1000 MS by 8MS per I/O (1000/8 = 125 IOPS)

Each time an application issues an I/O, it takes an average of 8MS to service that
I/O on a 10K RPM disk. Since this is a fixed time, it is imperative that the disk be
as efficient as possible with the time it will spend reading and writing to the disk.
The amount of I/O requests are often measured in I/Os Per Second (IOPS). The
10K RPM disk has the ability to push 120 to 150 (burst) IOPS. To measure the
effectiveness of IOPS, divide the amount of IOPS by the amount of data read or
written for each I/O.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 24 of 43

7.2 Random vs Sequential I/O
The relevance of KB per I/O depends on the workload of the system. There are
two different types of workload categories on a system. They are sequential and
random.

7.2.1 Sequential I/O

The iostat command provides information about IOPS and the amount of data
processed during each I/O. Use the –x switch with iostat. Sequential
workloads require large amounts of data to be read sequentially and at once.
These include applications like enterprise databases executing large queries and
streaming media services capturing data. With sequential workloads, the KB per
I/O ratio should be high. Sequential workload performance relies on the ability to
move large amounts of data as fast as possible. If each I/O costs time, it is
imperative to get as much data out of that I/O as possible.

iostat -x 1

avg-cpu: %user %nice %sys %idle
 0.00 0.00 57.1 4 42.86

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 12891.43 0.00 105.71 0.00 106080.00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 12857.14 0.00 5.71 0.00 105782.86 0.00 52891.43 18512.00 559.14 780.00 490.00 280.00
/dev/sda3 0.00 34.29 0.00 100.00 0.00 297.14 0.00 148.57 2.97 540.29 3594.57 24.00 240.00

avg-cpu: %user %nice %sys %idle
0.00 0.00 23.53 76.47

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 17320.59 0.00 102.94 0.00 142305.88 0.00 71152.94 1382.40 6975.29 952.29 28.57 294.12
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47 1344.00 6809.71 952.29 28.57 294.12
/dev/sda3 0.00 476.47 0.00 0.00 0.00 952.94 0.00 1976.47 0.00 165.59 0.00 0.00 276.47

The way to calculate the efficiency of IOPS is to divide the reads per second
(r/s) and writes per second (w/s) by the kilobytes read (rkB/s) and written
(wkB/s) per second. In the above output, the amount of data written per I/O for
/dev/sda increases during each iteration:

53040/105 = 505KB per I/O

71152/102 = 697KB per I/O

7.2.2 Random I/O

Random access workloads do not depend as much on size of data. They depend
primarily on the amount of IOPS a disk can push. Web and mail servers are
examples of random access workloads. The I/O requests are rather small.
Random access workload relies on how many requests can be processed at
once. Therefore, the amount of IOPS the disk can push becomes crucial.

iostat -x 1

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 25 of 43

avg-cpu: %user %nice %sys %idle
 2.04 0.00 97.96 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00
/dev/sda1 0.00 5.10 0.00 2.04 0.00 57.14 0.00 28.57 28.00 1.12 55.00 55.00 11.22
/dev/sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00
/dev/sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

avg-cpu: %user %nice %sys %idle
 2.15 0.00 97.85 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 41.94 6.45 130.98 51.61 352.69 25.81 3176.34 19.79 2.90 286.32 7.37 15.05
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 41.94 4.30 130.98 34.41 352.69 17.20 3176.34 21.18 2.90 320.00 8.24 15.05
/dev/sda3 0.00 0.00 2.15 0.00 17.20 0.00 8.60 0.00 8.00 0.00 0.00 0.00 0.00

The previous output shows that the amount of IOPS for writes stays almost the
same as the sequential output. The difference is the actual write size per I/O:

2640/102 = 23KB per I/O

3176/130 = 24KB per I/O

7.3 When Virtual Memory Kills I/O
If the system does not have enough RAM to accommodate all requests, it must
start to use the SWAP device. Just like file system I/O, writes to the SWAP
device are just as costly. If the system is extremely deprived of RAM, it is
possible that it will create a paging storm to the SWAP disk. If the SWAP device
is on the same file system as the data trying to be accessed, the system will
enter into contention for the I/O paths. This will cause a complete performance
breakdown on the system. If pages can't be read or written to disk, they will stay
in RAM longer. If they stay in RAM longer, the kernel will need to free the RAM.
The problem is that the I/O channels are so clogged that nothing can be done.
This inevitably can lead to a kernel panic and crash of the system.

The following vmstat output demonstrates a system under memory distress. It
is writing data out to the swap device:

 procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
17 0 1250 3248 45820 1488472 30 132 992 0 2437 7657 23 50 0 23
11 0 1376 3256 45820 1488888 57 245 416 0 2391 7173 10 90 0 0
12 0 1582 1688 45828 1490228 63 131 1348 76 2432 7315 10 90 0 10
12 2 3981 1848 45468 1489824 185 56 2300 68 2478 9149 15 12 0 73
14 2 10385 2400 44484 1489732 0 87 1112 20 2515 11620 0 12 0 88
14 2 12671 2280 43644 1488816 76 51 1812 204 2546 11407 20 45 0 35

The previous output demonstrates a large amount of read requests into memory (bi).
The requests are so many that the system is short on memory (free). This is causing
the system to send blocks to the swap device (so) and the size of swap keeps growing

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 26 of 43

(swpd). Also notice a large percentage of WIO time (wa). This indicates that the CPU is
starting to slow because of I/O requests.

To see the effect the swapping to disk is having on the system, check the swap partition
on the drive using iostat.

iostat -x 1

avg-cpu: %user %nice %sys %idle
 0.00 0.00 100.00 0.00

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 1766.67 4866.67 1700.00 38933.33 31200.00 19466.67 15600.00 10.68 6526.67 100.56 5.08
3333.33
/dev/sda1 0.00 933.33 0.00 0.00 0.00 7733.33 0.00 3866.67 0.00 20.00 2145.07 7.37 200.00
/dev/sda2 0.00 0.00 4833.33 0.00 38666.67 533.33 19333.33 266.67 8.11 373.33 8.07 6.90 87.00
/dev/sda3 0.00 833.33 33.33 1700.00 266.67 22933.33 133.33 11466.67 13.38 6133.33 358.46 11.35
1966.67

In the previous example, both the swap device (/dev/sda1) and the file system device
(/dev/sda3) are contending for I/O. Both have high amounts of write requests per
second (w/s) and high wait time (await) to low service time ratios (svctm). This
indicates that there is contention between the two partitions, causing both to under
perform.

7.4 Conclusion
I/O performance monitoring consists of the following actions:

• Any time the CPU is waiting on I/O, the disks are overloaded.
• Calculate the amount of IOPS your disks can sustain.
• Determine whether your applications require random or

sequential disk access.
• Monitor slow disks by comparing wait times and service times.
• Monitor the swap and file system partitions to make sure that

virtual memory is not contending for filesystem I/O.

8.0 Introducing Network Monitoring

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 27 of 43

Out of all the subsyetms to monitor, networking is the hardest to monitor. This is due
primarily to the fact that the network is abstract. There are many factors that are beyond
a system’s control when it comes to monitoring and performance. These factors include
latency, collisions, congestion and packet corruption to name a few.

This section focuses on how to check the performance of Ethernet, IP and TCP.

8.1 Ethernet Configuration Settings
Unless explicitly changed, all Ethernet networks are auto negotiated for speed.
The benefit of this is largely historical when there were multiple devices on a
network that could be different speeds and duplexes.

Most enterprise Ethernet networks run at either 100 or 1000BaseTX. Use
ethtool to ensure that a specific system is synced at this speed.

In the following example, a system with a 100BaseTX card is running auto
negotiated in 10BaseT.

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 10Mb/s
 Duplex: Half
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

The following example demonstrates how to force this card into 100BaseTX:

ethtool -s eth0 speed 100 duplex full autoneg off

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 28 of 43

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: No
 Speed: 100Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: off
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes

8.2 Monitoring Network Throughput
Just because an interface is now synchronized does not mean it is still having
bandwidth problems. It is impossible to control or tune the switches, wires, and
routers that sit in between two host systems. The best way to test network
throughput is to send traffic between two systems and measure statistics like
latency and speed.

8.2.0 Using iptraf for Local Throughput

The iptraf utility (http://iptraf.seul.org) provides a dashboard of
throughput per Ethernet interface.

iptraf –d eth0

Figure 1: Monitoring for Network Throughput

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 29 of 43

The previous output shows that the system tested above is sending traffic at a
rate of 61 mbps (7.65 megabytes). This is rather slow for a 100 mbps network.

8.2.1 Using netperf for Endpoint Throughput

Unlike iptraf which is a passive interface that monitors traffic, the netperf utility
enables a system administrator to perform controlled tests of network throughput.
This is extremely helpful in determining the throughput from a client workstation
to a heavily utilized server such as a file or web server. The netperf utility runs
in a client/server mode.

To perform a basic controlled throughput test, the netperf server must be
running on the server system:

server# netserver
Starting netserver at port 12865
Starting netserver at hostname 0.0.0.0 port 12865 and family AF_UNSPEC

There are multiple tests that the netperf utility may perform. The most basic
test is a standard throughput test. The following test initiated from the client
performs a 30 second test of TCP based throughput on a LAN:

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 30 of 43

The output shows that that the throughput on the network is around 89 mbps.
The server (192.168.1.215) is on the same LAN. This is exceptional
performance for a 100 mbps network.

client# netperf -H 192.168.1.215 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.230 (192.168.1.230) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 30.02 89.46

Moving off of the LAN onto a 54G wireless network within 10 feet of the router.
The throughput decreases significantly. Out of a possible 54MBits, the laptop
achieves a total throughput of 14 MBits

client# netperf -H 192.168.1.215 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.215 (192.168.1.215) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 30.10 14.09

At a distance of 50 feet and down one story in a building, the signal further
decreases to 5MBits.

netperf -H 192.168.1.215 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.215 (192.168.1.215) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 30.64 5.05

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 31 of 43

Moving off the LAN and onto the public Internet, the throughput drops to under
1Mbit.

netperf -H litemail.org -p 1500 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
litemail.org (72.249.104.148) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 31.58 0.93

The last check is the VPN connection, which has the worst throughput of all links
on the network.

netperf -H 10.0.1.129 -l 30
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
10.0.1.129 (10.0.1.129) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

 87380 16384 16384 31.99 0.51

Another useful test using netperf monitors the amount of TCP request and
response transactions taking place per second. The test accomplishes this by
creating a single TCP connection and then sending multiple request/response
sequences over that connection (ack packets back and forth with a byte size of
1). This behavior is similar to applications such as RDBMS executing multiple
transactions or mail servers piping multiple messages over one connection.

The following example simulates TCP request/response over the duration of 30
seconds:

client# netperf -t TCP_RR -H 192.168.1.230 -l 30
TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET
to 192.168.1.230 (192.168.1.230) port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 30.00 4453.80
16384 87380

In the previous output, the network supported a transaction rate of 4453
psh/ack per second using 1 byte payloads. This is somewhat unrealistic due to
the fact that most requests, especially responses, are greater than 1 byte.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 32 of 43

In a more realistic example, a netperf uses a default size of 2K for requests
and 32K for responses:

client# netperf -t TCP_RR -H 192.168.1.230 -l 30 -- -r 2048,32768
TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
192.168.1.230 (192.168.1.230) port 0 AF_INET
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 2048 32768 30.00 222.37
16384 87380

The transaction rate reduces significantly to 222 transactions per second.

8.2.3 Using iperf to Measure Network Efficiency

The iperf tool is similar to the netperf tool in that it checks connections
between two endpoints. The difference with iperf is that it has more in-depth
checks around TCP/UDP efficiency such as window sizes and QoS settings. The
tool is designed for administrators who specifically want to tune TCP/IP stacks
and then test the effectiveness of those stacks.

The iperf tool is a single binary that can run in either server or client mode. The
tool runs on port 5001 by default.

To start the server (192.168.1.215):

server# iperf -s -D
Running Iperf Server as a daemon
The Iperf daemon process ID : 3655
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--

In the following example, the iperf tool on the client performs an iterative test of
network throughput on a wireless network. The wireless network is fully utilized,
including multiple hosts downloading ISO image files.

The client connects to the server (192.168.1.215) and performs a 60 second
bandwidth test, reporting in 5 second iterations.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 33 of 43

client# iperf -c 192.168.1.215 -t 60 -i 5
--
Client connecting to 192.168.1.215, TCP port 5001
TCP window size: 25.6 KByte (default)
--
[3] local 192.168.224.150 port 51978 connected with
192.168.1.215 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0- 5.0 sec 6.22 MBytes 10.4 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 5.0-10.0 sec 6.05 MBytes 10.1 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 10.0-15.0 sec 5.55 MBytes 9.32 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 15.0-20.0 sec 5.19 MBytes 8.70 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 20.0-25.0 sec 4.95 MBytes 8.30 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 25.0-30.0 sec 5.21 MBytes 8.74 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 30.0-35.0 sec 2.55 MBytes 4.29 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 35.0-40.0 sec 5.87 MBytes 9.84 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 40.0-45.0 sec 5.69 MBytes 9.54 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 45.0-50.0 sec 5.64 MBytes 9.46 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 50.0-55.0 sec 4.55 MBytes 7.64 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 55.0-60.0 sec 4.47 MBytes 7.50 Mbits/sec
[ID] Interval Transfer Bandwidth
[3] 0.0-60.0 sec 61.9 MBytes 8.66 Mbits/sec

The other network traffic did have an effect on the bandwidth for this single host
as seen in the fluctuations between 4 – 10 Mbits over a 60 second interval.

In addition to TCP tests, iperf has UDP tests to measure packet loss and jitter.
The following iperf test was run on the same 54Mbit wireless G network with
network load. As demonstrated in the previous example, the network throughput
is currently only 9 out of 54 Mbits.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 34 of 43

iperf -c 192.168.1.215 -b 10M
WARNING: option -b implies udp testing
--
Client connecting to 192.168.1.215, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 107 KByte (default)
--
[3] local 192.168.224.150 port 33589 connected with 192.168.1.215 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 11.8 MBytes 9.90 Mbits/sec
[3] Sent 8420 datagrams
[3] Server Report:
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 6.50 MBytes 5.45 Mbits/sec 0.480 ms 3784/ 8419 (45%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order

Out of the 10M that was attempted to be transferred, only 5.45M actually made it
to the other side with a packet loss of 45%.

8.3 Individual Connections with tcptrace
The tcptrace utility provides detailed TCP based information about specific
connections. The utility uses libpcap based files to perform and an analysis of
specific TCP sessions. The utility provides information that is sometimes difficult
to catch in a TCP stream. This information includes:

• TCP Retransmissions – the amount of packets that needed to
be sent again and the total data size

• TCP Window Sizes – identify slow connections with small
window sizes

• Total throughput of the connection
• Connection duration

8.3.1 Case Study – Using tcptrace

The tcptrace utility may be available in some Linux software repositories. This
paper uses a precompiled package from the following website:
http://dag.wieers.com/rpm/packages/tcptrace. The tcptrace command
takes a source libpcap based file as an input. Without any options, the utility
lists all of the unique connections captured in the file.

The following example uses a libpcap based input file called bigstuff:

tcptrace bigstuff
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:01.634065, 89413 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
 1: 192.168.1.60:pcanywherestat - 192.168.1.102:2571 (a2b) 404> 450<
 2: 192.168.1.60:3356 - ftp.strongmail.net:21 (c2d) 35> 21<
 3: 192.168.1.60:3825 - ftp.strongmail.net:65023 (e2f) 5> 4<
(complete)
 4: 192.168.1.102:1339 - 205.188.8.194:5190 (g2h) 6> 6<

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 35 of 43

 5: 192.168.1.102:1490 - cs127.msg.mud.yahoo.com:5050 (i2j) 5> 5<
 6: py-in-f111.google.com:993 - 192.168.1.102:3785 (k2l) 13> 14<

<snip>

In the previous output, each connection has a number associated with it and the
source and destination host. The most common option to tcptrace is the –l
and –o option which provide detailed statistics on a specific connection.

The following example lists all of the statistics for connection #16 in the
bigstuff file:

tcptrace -l -o1 bigstuff
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:00.529361, 276008 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
32 TCP connections traced:
TCP connection 1:
 host a: 192.168.1.60:pcanywherestat
 host b: 192.168.1.102:2571
 complete conn: no (SYNs: 0) (FINs: 0)
 first packet: Sun Jul 20 15:58:05.472983 2008
 last packet: Sun Jul 20 16:00:04.564716 2008
 elapsed time: 0:01:59.091733
 total packets: 854
 filename: bigstuff
 a->b: b->a:
 total packets: 404 total packets: 450
 ack pkts sent: 404 ack pkts sent: 450
 pure acks sent: 13 pure acks sent: 320
 sack pkts sent: 0 sack pkts sent: 0
 dsack pkts sent: 0 dsack pkts sent: 0
 max sack blks/ack: 0 max sack blks/ack: 0
 unique bytes sent: 52608 unique bytes sent: 10624
 actual data pkts: 391 actual data pkts: 130
 actual data bytes: 52608 actual data bytes: 10624
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 zwnd probe pkts: 0 zwnd probe pkts: 0
 zwnd probe bytes: 0 zwnd probe bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 391 pushed data pkts: 130
 SYN/FIN pkts sent: 0/0 SYN/FIN pkts sent: 0/0
 urgent data pkts: 0 pkts urgent data pkts: 0 pkts
 urgent data bytes: 0 bytes urgent data bytes: 0 bytes
 mss requested: 0 bytes mss requested: 0 bytes
 max segm size: 560 bytes max segm size: 176 bytes
 min segm size: 48 bytes min segm size: 80 bytes
 avg segm size: 134 bytes avg segm size: 81 bytes
 max win adv: 19584 bytes max win adv: 65535 bytes
 min win adv: 19584 bytes min win adv: 64287 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 19584 bytes avg win adv: 64949 bytes
 initial window: 160 bytes initial window: 0 bytes
 initial window: 2 pkts initial window: 0 pkts
 ttl stream length: NA ttl stream length: NA
 missed data: NA missed data: NA
 truncated data: 36186 bytes truncated data: 5164 bytes
 truncated packets: 391 pkts truncated packets: 130 pkts

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 36 of 43

 data xmit time: 119.092 secs data xmit time: 116.954 secs
 idletime max: 441267.1 ms idletime max: 441506.3 ms
 throughput: 442 Bps throughput: 89 Bps

8.3.2 Case Study – Calculating Retransmission Percentages

It is almost impossible to identify which connections have severe enough
retransmission problems that require analysis. The tcptrace utility has the
ability to use filters and Boolean expressions to locate problem connections. On
a saturated network with multiple connections, it is possible that all connections
may experience retransmissions. The key is to locate which ones are
experiencing the most.

In the following example, the tcptrace command uses a filter to locate
connections that retransmitted more than 100 segments:

tcptrace -f'rexmit_segs>100' bigstuff
Output filter: ((c_rexmit_segs>100)OR(s_rexmit_segs>100))
1 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:00.687788, 212431 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
 16: ftp.strongmail.net:65014 - 192.168.1.60:2158 (ae2af) 18695> 9817<

In the previous output, connection #16 experienced had more than 100
retransmissions. From here, the tcptrace utility provides statistics on just that
connection:

tcptrace -l -o16 bigstuff
 arg remaining, starting with 'bigstuff'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

146108 packets seen, 145992 TCP packets traced
elapsed wallclock time: 0:00:01.355964, 107752 pkts/sec analyzed
trace file elapsed time: 0:09:20.358860
TCP connection info:
32 TCP connections traced:
================================
TCP connection 16:
 host ae: ftp.strongmail.net:65014
 host af: 192.168.1.60:2158
 complete conn: no (SYNs: 0) (FINs: 1)
 first packet: Sun Jul 20 16:04:33.257606 2008
 last packet: Sun Jul 20 16:07:22.317987 2008
 elapsed time: 0:02:49.060381
 total packets: 28512
 filename: bigstuff
 ae->af: af->ae:

<snip>

 unique bytes sent: 25534744 unique bytes sent: 0
 actual data pkts: 18695 actual data pkts: 0
 actual data bytes: 25556632 actual data bytes: 0

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 37 of 43

 rexmt data pkts: 1605 rexmt data pkts: 0
 rexmt data bytes: 2188780 rexmt data bytes: 0

To calculate the retransmission rate:

rexmt/actual * 100 = Retransmission rate

Or

1605/18695* 100 = 8.5%

The previous connection had a retransmission rate of 8.5% which is the cause of
the slow connection.

8.2.3 Case Study – Calculating Retransmits By Time

The tcptrace utility comes with a series of modules that present data by different
dimensions (protocol, port, time, etc). The slice module enables you to view TCP
performance over an elapsed time. Specifically, you can identify when exactly a
series of retransmits occurred and tie that back to other performance data to
locate a bottleneck.

The following example demonstrates how to create the time slice output file using
tcptrace:

tcptrace –xslice bigfile

This command creates a file called slice.dat in the present working directory. This
specific file contains the information about retransmissions at 15 second
intervals:

ls -l slice.dat
-rw-r--r-- 1 root root 3430 Jul 10 22:50 slice.dat
more slice.dat
date segs bytes rexsegs rexbytes new active
--------------- -------- -------- -------- -------- -------- --------
22:19:41.913288 46 5672 0 0 1 1
22:19:56.913288 131 25688 0 0 0 1
22:20:11.913288 0 0 0 0 0 0
22:20:26.913288 5975 4871128 0 0 0 1
22:20:41.913288 31049 25307256 0 0 0 1
22:20:56.913288 23077 19123956 40 59452 0 1
22:21:11.913288 26357 21624373 5 7500 0 1
22:21:26.913288 20975 17248491 3 4500 12 13
22:21:41.913288 24234 19849503 10 15000 3 5
22:21:56.913288 27090 22269230 36 53999 0 2
22:22:11.913288 22295 18315923 9 12856 0 2
22:22:26.913288 8858 7304603 3 4500 0 1

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 38 of 43

8.4 Conclusion
To monitor network performance, perform the following actions:

• Check to make sure all Ethernet interfaces are running at
proper rates.

• Check total throughput per network interface and be sure it is
inline with network speeds.

• Monitor network traffic types to ensure that the appropriate
traffic has precedence on the system.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 39 of 43

Appendix A: Performance Monitoring Step by Step –
Case Study
In the following scenario, an end user calls support and complains that the reporting
module of a web user interface is taking 20 minutes to generate a report when it should
take 15 seconds.

System Configuration

• RedHat Enterprise Linux 3 update 7
• Dell 1850 Dual Core Xenon Processors, 2 GB RAM, 75GB 15K

Drives
• Custom LAMP software stack

Performance Analysis Procedure
1. Start with the output of vmstat for a dashboard of system performance.

vmstat 1 10
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 1 0 249844 19144 18532 1221212 0 0 7 3 22 17 25 8 17 18
 0 1 249844 17828 18528 1222696 0 0 40448 8 1384 1138 13 7 65 14
 0 1 249844 18004 18528 1222756 0 0 13568 4 623 534 3 4 56 37
 2 0 249844 17840 18528 1223200 0 0 35200 0 1285 1017 17 7 56 20
 1 0 249844 22488 18528 1218608 0 0 38656 0 1294 1034 17 7 58 18
 0 1 249844 21228 18544 1219908 0 0 13696 484 609 559 5 3 54 38
 0 1 249844 17752 18544 1223376 0 0 36224 4 1469 1035 10 6 67 17
 1 1 249844 17856 18544 1208520 0 0 28724 0 950 941 33 12 49 7
 1 0 249844 17748 18544 1222468 0 0 40968 8 1266 1164 17 9 59 16
 1 0 249844 17912 18544 1222572 0 0 41344 12 1237 1080 13 8 65 13

Key Data Points

• There are no issues with memory shortages because there is
no sustained swapping activity (si and so). Although the free
memory is shrinking the swpd column does not change.

• There are no serious issues with the CPU. Although there is a
bit of a run queue, the processor is still over 50% idle.

• There are a high amount of context switches (cs) and blocks
being read in (bo).

• The CPU is stalled at an average of 20% waiting on I/O (wa).

Conclusion: A preliminary analysis points to an I/O bottleneck.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 40 of 43

2. Use iostat to determine from where the read requests are being generated.

iostat -x 1
Linux 2.4.21-40.ELsmp (mail.example.com) 03/26/2007

avg-cpu: %user %nice %sys %idle
 30.00 0.00 9.33 60.67

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 7929.01 30.34 1180.91 14.23 7929.01 357.84 3964.50 178.92 6.93 0.39 0.03 0.06 6.69
/dev/sda1 2.67 5.46 0.40 1.76 24.62 57.77 12.31 28.88 38.11 0.06 2.78 1.77 0.38
/dev/sda2 0.00 0.30 0.07 0.02 0.57 2.57 0.29 1.28 32.86 0.00 3.81 2.64 0.03
/dev/sda3 7929.01 24.58 1180.44 12.45 7929.01 297.50 3964.50 148.75 6.90 0.32 0.03 0.06 6.68

avg-cpu: %user %nice %sys %idle
 9.50 0.00 10.68 79.82

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 0.00 1195.24 0.00 0.00 0.00 0.00 0.00 0.00 43.69 3.60 0.99 117.86
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda3 0.00 0.00 1195.24 0.00 0.00 0.00 0.00 0.00 0.00 43.69 3.60 0.99 117.86

avg-cpu: %user %nice %sys %idle
 9.23 0.00 10.55 79.22

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
/dev/sda 0.00 0.00 1200.37 0.00 0.00 0.00 0.00 0.00 0.00 41.65 2.12 0.99 112.51
/dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
/dev/sda3 0.00 0.00 1200.37 0.00 0.00 0.00 0.00 0.00 0.00 41.65 2.12 0.99 112.51

Key Data Points

• The only active partition is the /dev/sda3 partition. All other
partitions are completely idle.

• There are roughly 1200 read IOPS (r/s) on a disk that supports
around 200 IOPS.

• Over the course of two seconds, nothing was actually read to
disk (rkB/s). This correlates with the high amount of wait I/O
from the vmstat.

• The high amount of read IOPS correlates with the high amount
of context switches in the vmstat. There are multiple read
system calls issued.

Conclusion: An application is inundating the system with more read requests than
the I/O subsystem can handle.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 41 of 43

3. Using top, determine what application is most active on the system

top -d 1
 11:46:11 up 3 days, 19:13, 1 user, load average: 1.72, 1.87, 1.80
176 processes: 174 sleeping, 2 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 12.8% 0.0% 4.6% 0.2% 0.2% 18.7% 63.2%
 cpu00 23.3% 0.0% 7.7% 0.0% 0.0% 36.8% 32.0%
 cpu01 28.4% 0.0% 10.7% 0.0% 0.0% 38.2% 22.5%
 cpu02 0.0% 0.0% 0.0% 0.9% 0.9% 0.0% 98.0%
 cpu03 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
Mem: 2055244k av, 2032692k used, 22552k free, 0k shrd, 18256k buff
 1216212k actv, 513216k in_d, 25520k in_c
Swap: 4192956k av, 249844k used, 3943112k free 1218304k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14939 mysql 25 0 379M 224M 1117 R 38.2 25.7% 15:17.78 mysqld
 4023 root 15 0 2120 972 784 R 2.0 0.3 0:00.06 top
 1 root 15 0 2008 688 592 S 0.0 0.2 0:01.30 init
 2 root 34 19 0 0 0 S 0.0 0.0 0:22.59 ksoftirqd/0
 3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0
 4 root 10 -5 0 0 0 S 0.0 0.0 0:00.05 events/0

Key Data Points

• The mysql process seems to be consuming the most
resources. The rest of the system is completely idle.

• There is a wait on I/O reported by top (wa) which can be
correlated with the wio field in vmstat.

Conclusion: It appears the mysql is the only process that is requesting resources
from the system, therefore it is probably the one generating the requests.

4. Now that MySQL has been identified as generating the read requests, use

strace to determine what is the nature of the read requests.

strace -p 14939

Process 14939 attached - interrupt to quit
read(29, "\3\1\237\1\366\337\1\222%\4\2\0\0\0\0\0012P/d", 20) = 20
read(29, "ata1/strongmail/log/strongmail-d"..., 399) = 399
_llseek(29, 2877621036, [2877621036], SEEK_SET) = 0
read(29, "\1\1\241\366\337\1\223%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 400) = 400
_llseek(29, 2877621456, [2877621456], SEEK_SET) = 0
read(29, "\1\1\235\366\337\1\224%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 396) = 396
_llseek(29, 2877621872, [2877621872], SEEK_SET) = 0
read(29, "\1\1\245\366\337\1\225%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 404) = 404

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 42 of 43

_llseek(29, 2877622296, [2877622296], SEEK_SET) = 0
read(29, "\3\1\236\2\366\337\1\226%\4\2\0\0\0\0\0012P/d", 20) = 20

Key Data Points

• There are a large amount of reads followed by seeks indicating
that the mysql application is generating random I/O.

• There appears to be a specific query that is requesting the read
operations.

Conclusion: The mysql application is executing some kind of read query that is
generating all of the read IOPS.

5. Using the mysqladmin command, report on which queries are both dominating
the system and taking the longest to run.

./mysqladmin -pstrongmail processlist

+----+------+-----------+------------+---------+------+----------+--
| Id | User | Host | db | Command | Time | State | Info
+----+------+-----------+------------+---------+------+----------+--
| 1 | root | localhost | strongmail | Sleep | 10 | |
| 2 | root | localhost | strongmail | Sleep | 8 | |
| 3 | root | localhost | root | Query | 94 | Updating | update `failures` set
`update_datasource`='Y' where database_id='32' and update_datasource='N' and |
| 14 | root | localhost | | Query | 0 | | show processlist

Key Data Points

• The MySQL database seems to be constantly running an
update query to a table called failures.

• In order to conduct the update, the database must index the
entire table.

Conclusion: An update query issued by MySQL is attempting to index an entire table
of data. The amount of read requests generated by this query is devastating system
performance.

Performance Follow-up
The performance information was handed to an application developer who
analyzed the PHP code. The developer found a sub-optimal implementation in
the code. The specific query assumed that the failures database would only scale
to 100K records. The specific database in question contained 4 million records.
As a result, the query could not scale to the database size. Any other query (such
as report generation) was stuck behind the update query.

Linux System and Network Performance Monitoring

Copyright 2009 Darren Hoch. All rights reserved. 43 of 43

References
• Ezlot, Phillip – Optimizing Linux Performance, Prentice Hall,

Princeton NJ 2005 ISBN – 0131486829
• Johnson, Sandra K., Huizenga, Gerrit – Performance Tuning for

Linux Servers, IBM Press, Upper Saddle River NJ 2005 ISBN
013144753X

• Bovet, Daniel Cesati, Marco – Understanding the Linux Kernel,
O’Reilly Media, Sebastoppl CA 2006, ISBN 0596005652

• Blum, Richard – Network Performance Open Source Toolkit,
Wiley, Indianapolis IN 2003, ISBN 0-471-43301-2

• Understanding Virtual Memory in RedHat 4, Neil Horman, 12/05
http://people.redhat.com/nhorman/papers/rhel4_vm.pdf

• IBM, Inside the Linux Scheduler,
http://www.ibm.com/developerworks/linux/library/l-scheduler/

• Aas, Josh, Understanding the Linux 2.6.8.1 CPU Scheduler,
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf

• Wieers, Dag, Dstat: Versatile Resource Statistics Tool,
http://dag.wieers.com/home-made/dstat/

