
 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

1

Abstract:

The purpose of this document is to describe how to monitor Linux operating systems for performance. This
paper examines how to interpret common Linux performance tool output. After collecting this output, the
paper describes how to make conclusions about performance bottlenecks. This paper does not cover how to
performance tune the kernel. Such topics will be covered in part II of this series.

Topic Outline:

1. Tuning Introduction
2. CPU Terminology
3. CPU Monitoring
4. Kernel CPU Thread Scheduling

1.0 Tuning Introduction

Performance tuning is the process of finding bottlenecks in a system and tuning the operating system to
eliminate these bottlenecks. Many administrators believe that performance tuning can be a “cook book”
approach, which is to say that setting some parameters in the kernel will simply solve a problem. This is not
the case. Performance tuning is about achieving balance between the different sub-systems of an OS. These
sub-systems include:

• CPU
• Memory
• IO
• Network

These sub-systems are all highly dependent on each other. Any one of them with high utilization can easily
cause problems in the other. For example:

• large amounts of page-in IO requests can fill the memory queues
• full gigabit throughput on an Ethernet controller may consume a CPU
• a CPU may be consumed attempting to maintain free memory queues
• a large number of disk write requests from memory may consume a CPU and IO channels

In order to apply changes to tune a system, the location of the bottleneck must be located. Although one sub-
system appears to be causing the problems, it may be as a result of overload on another sub-system.

1.1 Determining Application Type

In order to understand where to start looking for tuning bottlenecks, it is first important to understand
the behavior of the system under analysis. The application stack of any system is often broken down
into two types:

• IO Bound – An IO bound application requires heavy use of memory and the underlying

storage system. This is due to the fact that an IO bound application is processing (in
memory) large amounts of data. An IO bound application does not require much of the CPU
or network (unless the storage system is on a network). IO bound applications use CPU
resources to make IO requests and then often go into a sleep state. Database applications
are often considered IO bound applications.

• CPU Bound – A CPU bound application requires heavy use of the CPU. CPU bound
applications require the CPU for batch processing and/or mathematical calculations. High
volume web servers, mail servers, and any kind of rendering server are often considered
CPU bound applications.

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

2

1.2 Determining Baseline Statistics

System utilization is contingent on administrator expectations and system specifications. The only way
to understand if a system is having performance issues is to understand what is expected of the system.
What kind of performance should be expected and what do those numbers look like? The only way to
establish this is to create a baseline. Statistics must be available for a system under acceptable
performance so it can be compared later against unacceptable performance.

In the following example, a baseline snapshot of system performance is compared against a snapshot of
the system under heavy utilization.

alpha -> vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 1 0 138592 17932 126272 214244 0 0 1 18 109 19 2 1 1 96
 0 0 138592 17932 126272 214244 0 0 0 0 105 46 0 1 0 99
 0 0 138592 17932 126272 214244 0 0 0 0 198 62 40 14 0 45
 0 0 138592 17932 126272 214244 0 0 0 0 117 49 0 0 0 100
 0 0 138592 17924 126272 214244 0 0 0 176 220 938 3 4 13 80
 0 0 138592 17924 126272 214244 0 0 0 0 358 1522 8 17 0 75
 1 0 138592 17924 126272 214244 0 0 0 0 368 1447 4 24 0 72
 0 0 138592 17924 126272 214244 0 0 0 0 352 1277 9 12 0 79

alpha -> vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 0 145940 17752 118600 215592 0 1 1 18 109 19 2 1 1 96
 2 0 145940 15856 118604 215652 0 0 0 468 789 108 86 14 0 0
 3 0 146208 13884 118600 214640 0 360 0 360 498 71 91 9 0 0
 2 0 146388 13764 118600 213788 0 340 0 340 672 41 87 13 0 0
 2 0 147092 13788 118600 212452 0 740 0 1324 620 61 92 8 0 0
 2 0 147360 13848 118600 211580 0 720 0 720 690 41 96 4 0 0
 2 0 147912 13744 118192 210592 0 720 0 720 605 44 95 5 0 0
 2 0 148452 13900 118192 209260 0 372 0 372 639 45 81 19 0 0
 2 0 149132 13692 117824 208412 0 372 0 372 457 47 90 10 0 0

Just by looking at the numbers in the last column (id) which represent idle time, we can see that
under baseline conditions, the CPU is idle for 79% - 100% of the time. In the second output, we can see
that the system is 100% utilized and not idle. What needs to be determined is whether or not the
system at CPU utilization is managing.

2.0 CPU Terminology

The utilization of a CPU is largely dependent on what resource is attempting to access it. The kernel has a
scheduler that is responsible for scheduling two kinds of resources: threads (single or multi) and interrupts. The
scheduler gives different priorities to the different resources. The following list outlines the priorities from
highest to lowest:

• Hardware Interrupts – These are requests made by hardware on the system to process
data. For example, a disk may signal an interrupt when it has completed and IO transaction
or a NIC may signal that a packet has been received.

• Soft Interrupts – These are kernel software interrupts that have to do with maintenance of
the kernel. For example, the kernel clock tick thread is a soft interrupt. It checks to make
sure a process has not passed its allotted time on a processor.

• Real Time Threads – Real time threads have more priority than the kernel itself. A real
time process may come on the CPU and preempt (or “kick off) the kernel. The Linux 2.4

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

3

kernel is NOT a fully preemptable kernel, making it not ideal for real time application
programming.

• Kernel Threads – All kernel processing is handled at this level of priority.

• User Threads – This space is often referred to as “userland”. All software applications run

in the user space. This space has the lowest priority in the kernel scheduling mechanism.

In order to understand how the kernel manages these different resources, a few key concepts need to
be introduced. The following sections introduce context switches, run queues, and utilization.

2.1 Context Switches

Most modern processors can only run one process (single threaded) or thread at time. The n-way Hyper
threaded processors have the ability to run n threads at a time. Still, the Linux kernel views each
processor core on a dual core chip as an independent processor. For example, a system with one dual
core processor is reported as two individual processors by the Linux kernel.

A standard Linux kernel can run anywhere from 50 to 50,000 process threads at once. With only one
CPU, the kernel has to schedule and balance these process threads. Each thread has an allotted time
quantum to spend on the processor. Once a thread has either passed the time quantum or has been
preempted by something with a higher priority (a hardware interrupt, for example), that thread is
place back into a queue while the higher priority thread is placed on the processor. This switching of
threads is referred to as a context switch.

Every time the kernel conducts a context switch, resources are devoted to moving that thread off of
the CPU registers and into a queue. The higher the volume of context switches on a system, the more
work the kernel has to do in order to manage the scheduling of processes.

2.2 The Run Queue

Each CPU maintains a run queue of threads. Ideally, the scheduler should be constantly running and
executing threads. Process threads are either in a sleep state (blocked and waiting on IO) or they are
runnable. If the CPU sub-system is heavily utilized, then it is possible that the kernel scheduler can’t
keep up with the demand of the system. As a result, runnable processes start to fill up a run queue.
The larger the run queue, the longer it will take for process threads to execute.

A very popular term called “load” is often used to describe the state of the run queue. The system load
is a combination of the amount of process threads currently executing along with the amount of
threads in the CPU run queue. If two threads were executing on a dual core system and 4 were in the
run queue, then the load would be 6. Utilities such as top report load averages over the course of 1,
5, and 15 minutes.

2.3 CPU Utilization

CPU utilization is defined as the percentage of usage of a CPU. How a CPU is utilized is an important
metric for measuring system. Most performance monitoring tools categorize CPU utilization into the
following categories:

• User Time – The percentage of time a CPU spends executing process threads in the user

space.
• System Time – The percentage of time the CPU spends executing kernel threads and

interrupts.
• Wait IO – The percentage of time a CPU spends idle because ALL process threads are

blocked waiting for IO requests to complete.

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

4

• Idle – The percentage of time a processor spends in a completely idle state.

2.4 Time Slicing

The timeslice2 is the numeric value that represents how long a task can run until it is preempted. The
scheduler policy must dictate a default timeslice, which is not simple. A timeslice that is too long will
cause the system to have poor interactive performance; the system will no longer feel as if applications
are being concurrently executed. A timeslice that is too short will cause significant amounts of
processor time to be wasted on the overhead of switching processes, as a significant percentage of the
system's time will be spent switching from one process with a short timeslice to the next. Furthermore,
the conflicting goals of I/O-bound versus processor-bound processes again arise; I/O-bound processes
do not need longer timeslices, whereas processor-bound processes crave long timeslices (to keep their
caches hot, for example).

2.5 Priorities

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank processes
based on their worth and need for processor time. Processes with a higher priority will run before those
with a lower priority, while processes with the same priority are scheduled round-robin (one after the
next, repeating). On some systems, Linux included, processes with a higher priority also receive a
longer timeslice. The runnable process with timeslice remaining and the highest priority always runs.
Both the user and the system may set a processes priority to influence the scheduling behavior of the
system.

3.0 CPU Performance Monitoring

Understanding how well a CPU is performing is a matter of interpreting run queue, utilization, and context
switching performance. As mentioned earlier, performance is all relative to baseline statistics. There are,
however, some general performance expectations on any system. These expectations include:

• Run Queues – A run queue should have no more than 1-3 threads queued per processor. For
example, a dual processor system should not have more than 6 threads in the run queue.

• CPU Utilization – If a CPU is fully utilized, then the following balance of utilization should
be achieved.

• 65% – 70% User Time
• 30% - 35% System Time
• 0% - 5% Idle Time

• Context Switches – The amount of context switches is directly relevant to CPU utilization.
A high amount of context switching is acceptable if CPU utilization stays within the
previously mentioned balance

There are many tools that are available for Linux that measure these statistics. The first two tools examined
will be vmstat and top.

3.1 Using the vmstat Utility

The vmstat utility provides a good low-overhead view of system performance. Because vmstat is
such a low-overhead tool, it is practical to keep it running on a console even under a very heavily
loaded server were you need to monitor the health of a system at a glance. The utility runs in two
modes: average and sample mode. The sample mode will measure statistics over a specified interval.
This mode is the most useful when understanding performance under a sustained load. The following
example demonstrates vmstat running at 1 second intervals.

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

5

alpha-> vmstat
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 0 0 200560 88796 88612 179036 0 1 1 20 112 20 3 1 1 96

The relevant fields in the output are as follows

Field Description
R The amount of threads in the run queue. These are threads that are runnable, but the

CPU is not available to execute them.
B This is the number of processes blocked and waiting on IO requests to finish.
In This is the number of interrupts being processed.
Cs This is the number of context switches currently happening on the system.
Us This is the percentage of user CPU utilization.
Sys This is the percentage of kernel and interrupts utilization.
Wa This is the percentage of idle processor time due to the fact that ALL runnable threads

are blocked waiting on IO.
Id This is the percentage of time that the CPU is completely idle.

3.1.1 Case Study: Application Spike

In the following example, a system is experiencing CPU performance spikes, going from completely idle
to completely utilized.

alpha-> vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 4 0 200560 91656 88596 176092 0 0 0 0 103 12 0 0 0 100
 0 0 200560 91660 88600 176092 0 0 0 0 104 12 0 0 0 100
 0 0 200560 91660 88600 176092 0 0 0 0 103 16 1 0 0 99
 0 0 200560 91660 88600 176092 0 0 0 0 103 12 0 0 0 100
 0 0 200560 91660 88604 176092 0 0 0 80 108 28 0 0 6 94
 0 0 200560 91660 88604 176092 0 0 0 0 103 12 0 0 0 100
 1 0 200560 91660 88604 176092 0 0 0 0 103 12 0 0 0 100
 1 0 200560 91652 88604 176092 0 0 0 0 113 27 14 3 0 83
 1 0 200560 84176 88604 176092 0 0 0 0 104 14 95 5 0 0
 2 0 200560 87216 88604 176092 0 0 0 324 137 96 86 9 1 4
 2 0 200560 78592 88604 176092 0 0 0 0 104 23 97 3 0 0
 2 0 200560 90940 88604 176092 0 0 0 0 149 63 92 8 0 0
 2 0 200560 83036 88604 176092 0 0 0 0 104 32 97 3 0 0
 2 0 200560 74916 88604 176092 0 0 0 0 103 22 93 7 0 0
 2 0 200560 80188 88608 176092 0 0 0 376 130 104 70 30 0 0
 3 0 200560 74028 88608 176092 0 0 0 0 103 69 70 30 0 0
 2 0 200560 81560 88608 176092 0 0 0 0 219 213 38 62 0 0
 1 0 200560 90200 88608 176100 0 0 8 0 153 118 56 31 0 13
 0 0 200560 88692 88612 179036 0 0 2940 0 249 249 44 4 24 28
 2 0 200560 88708 88612 179036 0 0 0 484 254 94 39 22 1 38
 0 0 200560 88708 88612 179036 0 0 0 0 121 22 0 0 0 100
 0 0 200560 88708 88612 179036 0 0 0 0 103 12 0 0 0 100

The following observations are made from the output:

• The run queue during the spike goes as high as 3, almost passing the threshold.
• The percentage of CPU time in the user space goes to almost 90%, but then levels off.
• During this time, the amount of context switches does not increase significantly, this qould

suggest that a single threaded application used a large amount of processor for a short
period of time.

• It appears that the application batches all disk writes in one action. For one second, the
CPU experiences a disk usage spike (wa = 24%)

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

6

3.1.2 Case Study: Sustained CPU Utilization

In the next example, the system is completely utilized.

vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 3 0 206564 15092 80336 176080 0 0 0 0 718 26 81 19 0 0
 2 0 206564 14772 80336 176120 0 0 0 0 758 23 96 4 0 0
 1 0 206564 14208 80336 176136 0 0 0 0 820 20 96 4 0 0
 1 0 206956 13884 79180 175964 0 412 0 2680 1008 80 93 7 0 0
 2 0 207348 14448 78800 175576 0 412 0 412 763 70 84 16 0 0
 2 0 207348 15756 78800 175424 0 0 0 0 874 25 89 11 0 0
 1 0 207348 16368 78800 175596 0 0 0 0 940 24 86 14 0 0
 1 0 207348 16600 78800 175604 0 0 0 0 929 27 95 3 0 2
 3 0 207348 16976 78548 175876 0 0 0 2508 969 35 93 7 0 0
 4 0 207348 16216 78548 175704 0 0 0 0 874 36 93 6 0 1
 4 0 207348 16424 78548 175776 0 0 0 0 850 26 77 23 0 0
 2 0 207348 17496 78556 175840 0 0 0 0 736 23 83 17 0 0
 0 0 207348 17680 78556 175868 0 0 0 0 861 21 91 8 0 1

The following observations are made from the output:

• There are a high amount of interrupts and a low amount of context switches. It appears
that a single process is making requests to hardware devices.

• To further prove the presence of a single application, the us time is constantly at 85% and
above. Along with the low amount of context switches, the process comes on the processor
and stays on the processor.

• The run queue is just about at the limits of acceptable performance. On a couple
occasions, it goes beyond acceptable limits.

3.1.3 Case Study: Overloaded Scheduler

In the following example, the kernel scheduler is saturated with context switches.

alpha-> vmstat 1
procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy wa id
 2 1 207740 98476 81344 180972 0 0 2496 0 900 2883 4 12 57 27
 0 1 207740 96448 83304 180984 0 0 1968 328 810 2559 8 9 83 0
 0 1 207740 94404 85348 180984 0 0 2044 0 829 2879 9 6 78 7
 0 1 207740 92576 87176 180984 0 0 1828 0 689 2088 3 9 78 10
 2 0 207740 91300 88452 180984 0 0 1276 0 565 2182 7 6 83 4
 3 1 207740 90124 89628 180984 0 0 1176 0 551 2219 2 7 91 0
 4 2 207740 89240 90512 180984 0 0 880 520 443 907 22 10 67 0
 5 3 207740 88056 91680 180984 0 0 1168 0 628 1248 12 11 77 0
 4 2 207740 86852 92880 180984 0 0 1200 0 654 1505 6 7 87 0
 6 1 207740 85736 93996 180984 0 0 1116 0 526 1512 5 10 85 0
 0 1 207740 84844 94888 180984 0 0 892 0 438 1556 6 4 90 0

The following conclusions can be drawn from the output:

• The amount of context switches is higher than interrupts, suggesting that the kernel is

having to spend a considerable amount of time context switching threads.
• The high volume of context switches is causing an unhealthy balance of CPU utilization.

This is evident by the fact that the wait on IO percentage is extremely high and the user
percentage is extremely low.

• Because the CPU is block waiting for IO, the run queue starts to fill and the amount of
threads blocked waiting on IO also fills.

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

7

3.2 Using the mpstat Utility

If your system has multiple processor cores, you can use the mpstat command to monitor each
individual core. The Linux kernel treats a dual core processor as 2 CPU’s. So, a dual processor system
with dual cores will report 4 CPUs available. The mpstat command provides the same CPU utilization
statistics as vmstat, but mpstat breaks the statistics out on a per processor basis.

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 0.00 0.00 3.19 96.53 13.27
05:17:32 PM 0 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 1 1.12 0.00 12.73 86.15 13.27
05:17:32 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:32 PM 3 0.00 0.00 0.00 100.00 0.00

3.2.1 Case Study: Underutilized Process Load

In the following case study, a 4 CPU cores are available. There are two CPU intensive processes running
that fully utilize 2 of the cores (CPU 0 and 1). The third core is processing all kernel and other system
functions (CPU 3). The fourth core is sitting idle (CPU 2).

mpstat –P ALL 1
Linux 2.4.21-20.ELsmp (localhost.localdomain) 05/23/2006

05:17:31 PM CPU %user %nice %system %idle intr/s
05:17:32 PM all 81.52 0.00 18.48 21.17 130.58
05:17:32 PM 0 83.67 0.00 17.35 0.00 115.31
05:17:32 PM 1 80.61 0.00 19.39 0.00 13.27
05:17:32 PM 2 0.00 0.00 16.33 84.66 2.01
05:17:32 PM 3 79.59 0.00 21.43 0.00 0.00

05:17:32 PM CPU %user %nice %system %idle intr/s
05:17:33 PM all 85.86 0.00 14.14 25.00 116.49
05:17:33 PM 0 88.66 0.00 12.37 0.00 116.49
05:17:33 PM 1 80.41 0.00 19.59 0.00 0.00
05:17:33 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:33 PM 3 83.51 0.00 16.49 0.00 0.00

05:17:33 PM CPU %user %nice %system %idle intr/s
05:17:34 PM all 82.74 0.00 17.26 25.00 115.31
05:17:34 PM 0 85.71 0.00 13.27 0.00 115.31
05:17:34 PM 1 78.57 0.00 21.43 0.00 0.00
05:17:34 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:34 PM 3 92.86 0.00 9.18 0.00 0.00

05:17:34 PM CPU %user %nice %system %idle intr/s
05:17:35 PM all 87.50 0.00 12.50 25.00 115.31
05:17:35 PM 0 91.84 0.00 8.16 0.00 114.29
05:17:35 PM 1 90.82 0.00 10.20 0.00 1.02
05:17:35 PM 2 0.00 0.00 0.00 100.00 0.00
05:17:35 PM 3 81.63 0.00 15.31 0.00 0.00

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

8

3.3 CPU Performance Tuning

The Linux 2.6 kernel does not provide any tunable parameters for the CPU subsystem. The best way to
tune the CPU subsystem is to familiarize yourself with acceptable CPU usage percentages. If a CPU is
overutilized, use commands like top and ps to identify the offending application process. That process
will need to be moved to another system or more hardware resources must be dedicated to running the
application.

The following top output displays CPU utilization information for a system running StrongMail MTA
servers. This system is at the acceptable CPU usage limit. Any more StrongMail MTA processes would
require additional CPUs.

top

Tasks: 102 total, 5 running,
 97 sleeping, 0 stopped,m 406m 69m R 89.6 10.0 26:15.64 strongmail-sm
 0 zombie
Cpu(s): 51.8% us, 47.8% sy,
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

2717 strongma 18 0 799m 703m 68m R 12.6 17.4 29:43.39 strongmail-sm
tp :03.85 strongmail-smtp
2663 strongma 25 0 457m 450m 68m R 36.3 11.1 30:26.71 strongmail-sm
tp
2719 strongma 20 0 408m 406m 69m R 63.6 10.0 26:17.55 strongmail-sm
--More--(74%)4k free, 1543392k m 2428 S 9.1 0.3 2:08.91 strongmail-psto
cached
 2702 strongma 15 0 13688 10m 1788 S 0.0 0.2 0:00.97 strongmail-logp

4.0 Virtual Memory Terminology

Virtual memory uses a disk as an extension of RAM so that the effective size of usable memory grows
correspondingly. The kernel will write the contents of a currently unused block of memory to the hard disk so
that the memory can be used for another purpose. When the original contents are needed again, they are read
back into memory. This is all made completely transparent to the user; programs running under Linux only see
the larger amount of memory available and don't notice that parts of them reside on the disk from time to
time. Of course, reading and writing the hard disk is slower (on the order of a thousand times slower) than
using real memory, so the programs don't run as fast. The part of the hard disk that is used as virtual memory is
called the swap space.

4.1 Virtual Memory Pages

Virtual memory is divided into pages. Each virtual memory page on the X86 architecture is 4KB. When
the kernel writes memory to and from disk, it writes memory in pages. The kernel writes memory
pages to both the swap device and the file system

4.2 Virtual Size (VSZ) and Resident Set Size (RSS)

When an application starts, it requests virtual memory (VSZ). The kernel either grants or denies the
virtual memory request. As the application uses the requested memory, that memory is mapped into
physical memory. The RSS is the amount of virtual memory that is physically mapped into memory. In
most cases, an application uses less resident memory (RSS) than it requested (VSZ).

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

9

The following output from the ps command displays the VSZ and RSS values. In all cases, VSZ is greater
than RSS. This means that although an application requested virtual memory, not all of it is allocated
in RAM (RSS).

ps –aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

<snip>

daemon 2177 0.0 0.2 3352 648 ? Ss 23:03 0:00 /usr/sbin/atd
dbus 2196 0.0 0.5 13180 1320 ? Ssl 23:03 0:00 dbus-daemon-1 --sys
root 2210 0.0 0.4 2740 1044 ? Ss 23:03 0:00 cups-config-daemon
root 2221 0.3 1.5 6108 4036 ? Ss 23:03 0:02 hald
root 2231 0.0 0.1 2464 408 tty1 Ss+ 23:03 0:00 /sbin/mingetty tty1
root 2280 0.0 0.1 3232 404 tty2 Ss+ 23:03 0:00 /sbin/mingetty tty2
root 2343 0.0 0.1 1692 408 tty3 Ss+ 23:03 0:00 /sbin/mingetty tty3
root 2344 0.0 0.1 2116 404 tty4 Ss+ 23:03 0:00 /sbin/mingetty tty4
root 2416 0.0 0.1 1476 408 tty5 Ss+ 23:03 0:00 /sbin/mingetty tty5
root 2485 0.0 0.1 1976 408 tty6 Ss+ 23:03 0:00 /sbin/mingetty tty6
root 2545 0.0 0.9 10920 2336 ? Ss 23:03 0:00 /usr/bin/gdm-binary

4.3 Paging and Swapping

Paging and swapping are two different actions taken by the kernel depending on system load. System
paging is a normal activity. Memory pages are read and written to both the swap device and the file
system. If the system is low on RAM, the kernel will first attempt to write pages to the swap device to
free RAM. If the kernel can’t free enough memory in time, it will start to swap whole processes.
Whereas paging takes single memory pages, swapping takes entire memory regions associated with
certain processes and writes them to the swap device.

4.4 Kernel Paging with pdflush and kswapd

There are two daemons that are responsible for synchronizing memory. When pages in memory are
modified by running processes, they become “dirty”. These dirty pages must be written back to either
the disk or the swap device.

4.4.1 pdflush

The pdflush daemon is responsible for synchronizing any pages associated with a file on a
filesystem back to disk. In other words, when a file is modified in memory, the pdflush
daemon writes it back to disk.

ps -ef | grep pdflush
root 28 3 0 23:01 ? 00:00:00 [pdflush]
root 29 3 0 23:01 ? 00:00:00 [pdflush]

The pdflush daemon starts synchronizing dirty pages back to the filesystem when 10% of the
pages in memory are dirty. This is due to a kernel tuning parameter called
vm.dirty_background_ratio.

sysctl -n vm.dirty_background_ratio
10

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

10

4.4.2 kswapd

The kswapd daemon is responsible for freeing memory in the event of a memory shortage. If
available system memory pages fall below a minimum free threshold, then the kswapd daemon
starts scanning memory pages. It performs the following actions:

• If the page is unmodified, it places the page on the free list.
• If the page is modified and backed by a filesystem, it writes the contents of the

page to disk.
• If the page is modified and not backed up by any filesystem, it writes the contents

of the page to the swap device.

ps -ef | grep kswapd
root 30 1 0 23:01 ? 00:00:00 [kswapd0]

4.5 Case Study: Large Inbound I/O

The vmstat utility reports on virtual memory usage in addition to CPU usage. The following
fields in the vmstat output are relevant to virtual memory:

Field Description
Swapd The amount of virtual memory in KB currently in use. As free memory reaches low

thresholds, more data is paged to the swap device.
Free The amount of physical RAM in kilobytes currently available to running applications.
Buff The amount of physical memory in kilobytes in the buffer cache as a result of read() and

write() operations.
Cache The amount of physical memory in kilobytes mapped into process address space.
so The amount of data in kilobytes written to the swap disk.
si The amount of data in kilobytes written from the swap disk back into RAM.
Bo The amount of disk blocks paged out from the RAM to the filesystem or swap device.
Bi The amount of disk blocks paged into RAM from the filesystem or swap device.

The following vmstat output demonstrates heavy utilization of virtual memory during an I/O
application spike.

vmstat 3
 procs memory swap io system cpu
 r b swpd free buff cache si so bi bo in cs us sy id wa
 3 2 809192 261556 79760 886880 416 0 8244 751 426 863 17 3 6 75
 0 3 809188 194916 79820 952900 307 0 21745 1005 1189 2590 34 6 12 48
 0 3 809188 162212 79840 988920 95 0 12107 0 1801 2633 2 2 3 94
 1 3 809268 88756 79924 1061424 260 28 18377 113 1142 1694 3 5 3 88
 1 2 826284 17608 71240 1144180 100 6140 25839 16380 1528 1179 19 9 12 61
 2 1 854780 17688 34140 1208980 1 9535 25557 30967 1764 2238 43 13 16 28
 0 8 867528 17588 32332 1226392 31 4384 16524 27808 1490 1634 41 10 7 43
 4 2 877372 17596 32372 1227532 213 3281 10912 3337 678 932 33 7 3 57
 1 2 885980 17800 32408 1239160 204 2892 12347 12681 1033 982 40 12 2 46
 5 2 900472 17980 32440 1253884 24 4851 17521 4856 934 1730 48 12 13 26
 1 1 904404 17620 32492 1258928 15 1316 7647 15804 919 978 49 9 17 25
 4 1 911192 17944 32540 1266724 37 2263 12907 3547 834 1421 47 14 20 20
 1 1 919292 17876 31824 1275832 1 2745 16327 2747 617 1421 52 11 23 14
 5 0 925216 17812 25008 1289320 12 1975 12760 3181 772 1254 50 10 21 19
 0 5 932860 17736 21760 1300280 8 2556 15469 3873 825 1258 49 13 24 15

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

11

 The following observations are made from this output:

• A large amount of disk blocks are paged in (bi) from the filesystem. This is evident
in the fact that the cache of data in process address spaces (cache) grows.

• During this period, the amount of free memory (free) remains steady at 17MB
even though data is paging in from the disk to consume free RAM.

• To maintain the free list, kswapd steals memory from the read/write buffers
(buff) and assigns it to the free list. This is evident in the gradual decrease of the
buffer cache (buff).

• The kswapd process then writes dirty pages to the swap device (so). This is
evident in the fact that the amount of virtual memory utilized gradually increases
(swpd).

5.0 Linux Virtual Memory Kernel Tuning

The Linux kernel contains a series of tunable parameters for the virtual memory subsystem. These
parameters are accessible via the /proc interface. Linux provides the sysctl command as an
administrator interface to the /proc filesystem and the ability to tune the VM subsystem. Some of
these parameters are tunable while others are read only.

sysctl –a | grep vm
vm.legacy_va_layout = 0
vm.vfs_cache_pressure = 100
vm.block_dump = 0
vm.laptop_mode = 0
vm.max_map_count = 65536
vm.min_free_kbytes = 512
vm.lower_zone_protection = 0
vm.hugetlb_shm_group = 0
vm.nr_hugepages = 0
vm.swappiness = 60
vm.nr_pdflush_threads = 2
vm.dirty_expire_centisecs = 3000
vm.dirty_writeback_centisecs = 500
vm.dirty_ratio = 40
vm.dirty_background_ratio = 10
vm.page-cluster = 3
vm.overcommit_ratio = 50
vm.overcommit_memory = 0

The following tunable parameters will be discussed as they are the ones that have maximum impact on
the system.

5.1 laptop mode

Laptop Mode is an umbrella setting designed to increase battery life in lap-tops. By enabling
laptop mode the VM makes decisions regarding the write-out of pages in such a way as to
attempt to minimize high power operations. Specifically, enabling laptop mode does the
following:

• Modifies the behavior of kswapd to allow more pages to dirty before swapping
• Modifies the behavior of pdflush to allow more buffers to be dirty before writing

them back to disk

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

12

• Coordinates the activities of kswapd and pdflush such that they write to disk when
the disk is active to avoid unneeded disk spin up activity, which wastes battery
power.

5.2 overcommit memory

Overcommit memory is a value which sets the general kernel policy toward granting memory
allocations. If the value in this file is 0, then the kernel will check to see if there is enough
memory free to grant a memory request to a malloc call from an application. If there is enough
memory then the request is granted. Otherwise it is denied and an error code is returned to
the application. If the setting in this file is 1, the kernel will allow all memory allocations,
regardless of the current memory allocation state. If the value is set to 2, then the kernel will
grant allocations above the amount of physical ram and swap in the system, as defined by the
overcommit ratio value (defined below). Enabling this feature can be somewhat helpful in

environments which allocate large amounts of memory expecting worst case scenarios, but do
not use it all.

You can check to see how much memory you are using and how much you have free by using
the free command. Run the free command when your system is running at the best
performance. This will ensure that all applications have already taken their memory.

In the following output, the system only uses 110 MB of 256 MB of total swap.

free
 total used free shared buffers cached
Mem: 256044 110984 145060 0 4212 33820
-/+ buffers/cache: 72952 183092
Swap: 524280 17736 506544

You can check to see per process if your applications are using all of their virtual memory with
the ps command. The following output displays how much RAM (RSS) sendmail is actually using.

ps -aux | egrep 'RSS| sendmail'
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
smmsp 2108 0.0 0.9 6892 2436 ? Ss 18:12 0:00 sendmail:
root 2100 0.0 1.0 7688 2668 ? Ss 18:12 0:00 sendmail:
accepting connections

5.3 overcommit ratio

This tunable defines the amount by which the kernel will overextend its memory resources, in
the event that overcommit memory is set to the value 2. The value in this file represents a
percentage which will be added to the amount of actual RAM in a system when considering
whether to grant a particular memory request. For instance, if this value was set to 50, then
the kernel would treat a system with 1GB of RAM and 1GB of swap as a system with 2.5GB of
allocatable memory when considering weather to grant a malloc request from an application.

5.4 dirty expire centisecs

This tunable, expressed in 100thsof a second, defines how long a disk buffer can remain in RAM
in a dirty state. If a buffer is dirty, and has been in RAM longer than this amount of time, it will
be written back to disk when the pdflush daemon runs. Applications not reliant on I/O can
benefit from tuning this parameter up and thus decreasing the amount of interrupts generated
by disk synchronization I/O requests from pdflush.

 Extreme Linux Performance Monitoring and Tuning

© 2006 StrongMail Systems – “Unlock the Power of Digital Messaging” – http://www.strongmail.com

13

5.5 dirty writeback centisecs

This tunable, also expressed in 100thsof a second, defines the poll interval between iterations
of any one of the pdflush daemons. Lowering this value causes a pdflush task to wake up
more often, decreasing the latency between the time a buffer is dirtied, and the time it is
written back to disk, while lowering it increases the poll interval and the sync-to-disk latency.
Systems not generating I/O can benefit by tuning this up and decreasing the frequency of when
pdflush runs.

5.6 dirty ratio

This value, expressed as a percentage of total system memory, defines the limit at which
processes which are generating dirty buffers will begin to synchronously write out data to disk,
rather than relying on the pdflush daemons to do it.

Increasing this value tends to make disk write access and response times faster for a for I/O
intensive processes ONLY if enough I/O bandwidth is available. If this parameter is tuned up
too high, it may cause an I/O bottleneck by sending too many requests at once.

5.7 page-cluster

This tunable defines how many pages of data are read into memory on a page fault. In an effort
to decrease disk I/O, the Linux VM reads pages beyond the page faulted on into memory, on
the assumption that the pages of data beyond the page being accessed will soon be accessed by
the same task.

If the system is a sequential I/O system like a large scale database, then tuning up the page
cluster size will reduce the amount of disk seeks and rotational operations needed to page data
into the disk.

5.8 Swappiness

Swappiness lets an admin decide how quickly they want the VM to reclaim mapped pages,
rather than just try to flush out dirty page cache data. The algorithm for deciding whether to
reclaim mapped pages is based on a combination of the percentage of the inactive list scanned
in an effort to reclaim pages, the amount of total system memory mapped, and the swappiness
value.

By tuning swappiness up, the kernel will dedicate more resources to try to free existing
memory pages in RAM, generating less I/O, but also increasing system CPU time. If your system
is running at acceptable levels and you have 20% to 30% idle time, you may tune this parameter
higher to dedicate more CPU time to freeing memory.

 By tuning swappiness down, the kernel will spend less system CPU time freeing memory and
generate more I/O. If your system is CPU intensive with relatively idle I/O, then tuning this
parameter down will decrease CPU cycles and leverage the idle I/O channels. I/O is not CPU
intensive or expensive.

References

Understanding Virtual Memory in RedHat 4, Neil Horman, 12/05
http://people.redhat.com/nhorman/papers/rhel4_vm.pdf

